Lessons from the Disaster of East Japan Great Earthquake and Tsunami 311

Shunji Murai
Professor Emeritus, University of Tokyo, Japan

Abstract
The report summarizes what we have learnt from the disaster of the East Japan Great Earthquake and Tsunami which occurred on March 11, 2011 over a wide area of East Japan. It includes descriptions of the losses due to the disaster, lessons from the past and present disasters with focus on what was done correctly and what went wrong, the accident at Fukushima Nuclear Power Station (NPS) and my views.

Introduction
Japan is not yet managing the disaster but suffering from the associated hardships, particularly in tackling the stabilization of the Fukushima NPS. Even one month after the event, the consequent disaster, including the lack of life lines such as the supply of water, gas, electricity, oil, transportation and so on are still ongoing. Though all Japanese people are in mourning over the horror of this event, I feel it is my duty as an old scholar to report to the rest of the world on the worst earthquake and Tsunami in living memory to hit Japan. I hope that my report will be useful to prevent the similar misery for others.

What happened and how much lost?
At 2:46pm on the 11th March 2011, the huge earthquake of M9.0 occurred offshore of Sanriku (north east of Japan) with its epicenter covering a region 500km long (north-south) and 200km wide (east-west) in the Pacific Ocean (see Fig.1). Accordingly the damaged areas were also 500km long stretching from a part of Hokkaido (the north island of Japan) in the north to Tokyo in the south. We have had many big earthquakes in the past, for example Kobe Great Earthquake in 1995 with 6000 victims, but the damaged area from this earthquake was limited in several 10s of km. A sea bottom control point of the Japan Coast Guard located at the depth of 1700m near the epicenter proved to have moved 24m to the east and 5m vertically. The GPS station of Geospatial Information Authority (GSI) located at Oga Peninsula showed a 5.3m movement to the east. This is the largest crustal movement ever recorded in Japan. More than 300 after-shocks have followed. It is quite unusual for 77 after-shocks stronger than M6 to occur. The largest after-shock occurred on the 7th April with the magnitude of M7.1 which resulted in the death of 4 persons and electricity failures in Aomori, Iwate, Akita and Miyagi Prefecture due to damage to the Miyagi substation, Onagawa and Higashidori Nuclear Power Station and the fuel power station of Hachinohe, Akita and Noshiro. The after-shock caused additional damage to cities and industries recovering from the initial earthquake.

I was in my house located in the west of Tokyo at the time of the earthquake. When I felt that it was dangerous to stay in my room I rushed out of my house together with my wife. The shaking continued for almost 3 minutes (normally most earthquakes only last about one minute even in the
case of very big earthquakes). After the earthquake had settled I switched on TV because I had not realized that very serious damage had occurred in the Tohoku Area (north east of Japan) and that a Tsunami would be coming soon.

The damages as of April 9, about a month after the earthquake are as follows: 12,915 dead (so far confirmed); 14,921 missing (reported only); 153,680 evacuees; 219,555 houses destroyed; 2,200 roads damaged; 56 bridges collapsed; 6 fuel power stations destroyed. Tohoku Shinkansen and Tohoku Highway were severely damaged. Tohoku Highway was repaired about two weeks afterwards while Tohoku Shinkansen is not yet fully operational, but it is expected to be brought back into operations in the middle of April. The main damage was caused by the Tsunami which swept away a huge number of people, cars, houses, fishing boats, ports and harbors (see Fig.2a and 2b).

The height of the Tsunami was measured as follows from the north (height at the coast/height as it travelled over land); Miyako (12.1m/37.8m), Kamaishi (9.3m/21.4m), Ofunado (11.8m/23.6m), Kesennuma (12.8m/19.6m), Minami Sanriku (15.8m/no data), Onagawa (18.3m/no data), Ishinomaki (10.3m/no data), Sendai (9.3m/no data), Natori (9.0m/no data), Fukushima NPS (15m/nodata) etc. The highest point of the Tsunami on land was 37.8 m above the sea level at Taro District, Miyako City, Miyagi Prefecture, according to the survey of University of Tokyo. The Tsunami hit small coastal towns 5km upstream along a river in the Sanriku Area, where the bay has a V shaped topography which exaggerates the height of Tsunami. Along the River Kitagami, the 5m Tsunami hit the mouth where it swept away all harbor facilities and boats, at the 4km point along the river a bridge collapsed, at the 6km mark riverside villages were flooded, at 14km along the river agriculture fields were inundated and at the 49 km mark the water level at the gauge station suddenly rose 10cm one hour after the earthquake. Even at Toda, 28km upstream on the River Arakawa, flowing into Tokyo Bay, the water level rose 1m 20cm after the earthquake. Such Tsunami propagation would normally be unexpected.

The Tsunami swept away 18,800 fishing boats and destroyed 326 fishing ports and inundated 23,600ha of agricultural fields with sea water. Many industries such as oil refineries and supply facilities, electric and electronic and car parts manufacturing plants, housing material plants, fish and other foods supply centers, transportation and so on were destroyed, which resulted in for example, halting the production of Toyota and Nissan cars not only in Japan but also in USA. The Tsunami severely damaged 43 railway lines of which 6,000 points were destroyed. A total of 22km of railways were washed away or inundated by the Tsunami. The state of the JR Joban line within 20km of Fukushima NPS has not yet been investigated because of atomic radiation risks.

A huge amount of debris and garbage including crashed cars were washed away by Tsunami, estimated to be about 25 million tones which will take three to five years to clear away. As evidence is needed for car insurance compensation, the crashed cars could not be treated as garbage until the owner or car number has been confirmed within a certain period. The garbage is difficult to classify and recycle into resource as everything is completely mixed and it may contain chemically dangerous items.

The most serious accident was the destruction of the Fukushima Nuclear Power Plants where the
cooling system and electric and electronic facilities were severely damaged by the Tsunami (see Fig.3), resulting in the extraordinary heating up of the nuclear reactors and protection vessels. Accordingly, a Hydrogen gas explosion occurred in No.1 Reactor at 15:36 on the 12th March and in Reactor No. 3 at 11:01 on the 14th March. In order to reduce the pressure of the Reactors, the valves were open at No.1 Reactor at 10:17 on the 12th March, at No.3 Reactor at 20:41 on the 12th March and at No. 2 Reactor at 11:00 on the 13th March. As the result, atomic radiation spilled out polluting the air, water and soil and as a result vegetables and milk. As polluted water was spilled out and also was discharged into the sea, fish caught in Ibaragi and Fukushima Prefecture were contaminated with atomic radiation and hence refused for sale at the market. This was a big shock for Japanese who are a fish-eating nation, and regularly consume Sashimi and Sushi.

68,000 people within 20km radius had to move out of their residences and 140,000 people within 20~30km had to stay inside their houses or evacuate. The total number of people evacuated was a maximum of 450,000 as result of not only the earthquake and Tsunami but also the nuclear power plant accident. The survivors and evacuees have had to stay in congested houses without lighting, heating, water, food, blankets etc. in spite of sub-zero temperatures, until supporting materials arrived. Those evacuees are gradually returning to their lands or locating in areas where supporters are kindly providing them with living facilities. The remaining evacuees who are located in the refugee camps are mainly aged persons over 60 years old. Two thirds of victims are in their 60’s or older. One of the headaches is the damage to schools and the education scheme. 155 schools which normally educate 27,600 children could not open in April, a new semester for the Japanese education system.

People in the metropolitan area of Tokyo were also panicking as all trains and subways were halted making it impossible for several million people to go back home and very difficult to even move around. Within 30 minutes of the earthquake, all drinks and food were sold out in shops. From the next day, water, food, toilet papers etc. were also sold out at super markets, department stores, convenient stores and so on. Electricity failures also commenced as the electric power stations stopped operations leading to shortages of electricity. Tokyo Electric and Power Supply Company (TEPCO) had the capacity of 52 million KW before the earthquake which was reduced to 31 million KW after the disaster, and which has recovered to 40 million KW a month after the earthquake. But this is not enough to support industrial and domestic demand which peaks at 60 million KW in the summer season. Fukushima NPS was providing about 9 million KW. There were serious shortages of gasoline as oil refinery facilities were also damaged. Almost all gas stations and tanks were swept away in the coastal areas. This led to problems in transporting relief supplies to the damaged areas because of a lack of gasoline. Even in Tokyo two weeks after the disaster, we had to queue an hour for gasoline supplies which are limited to only 10 liters (after a month this problem has been solved). In addition, almost all ports were damaged by the Tsunami, while roads and railways were unusable. Only defense helicopters were available to the rescue parties. Mobile phones and Internet at the sites were not available for many days, which made communications between safe and damaged areas, as well as among family and relatives difficult. Many survivors lost their mobile phones but even if they had their mobile phones, they could not use them because
there were no electricity services.

Lessons from the past disasters in Japan

Japanese people are well educated on evacuation procedures in the case of earthquakes and Tsunami as so many terrible disasters have occurred in the past. In particular the area of Sanriku was heavily damaged by the Great Tsunami in 1896 which killed almost 22,000 people including my great grandfather. Following this terrible lesson, many coastal towns constructed breakwaters to protect them against future Tsunamis. For example, Kamaishi City, Iwate Prefecture constructed huge breakwaters 2km long, 20m thick, 8m above sea level and 65m deep, which have been registered as the deepest breakwaters in the Guinness World Records (see Fig.4a and 4b). Taro fishing village, Miyako District, Iwate Prefecture constructed 10m high breakwaters with the total length of 2.4 km against Tsunami, as the village was most seriously damaged by the 1896 Tsunami (with a height of 38.2m) and the 1933 Tsunami. But these breakwaters, called Taro Great Wall, were completely destroyed by the Tsunami this time, which was 14m high, much higher than authorities had prepared for. There was only one village, named Fudai Village, Iwate Prefecture, that successfully withstood the 12m Tsunami with a 15.5m high breakwater and water gate. The village head had constructed this high breakwater although many people criticized him for spending such a huge budget on the structure. The past village head had been informed by his ancestor that the 1896 Tsunami was 15m high and a lower breakwater could not work against future Tsunamis. None of the villagers died. Many people said that the Tsunami was higher than expected, but the Tsunami in 1896 was a maximum of 38m high! We should have learnt the lessons that ‘hardware’ including very high breakwaters, cannot guarantee saving people, but we need to use ‘software’ including procedures for providing early warning and evacuation systems.

There was a small village in Aneyoshi District, Miyako City, Iwate Prefecture which was thoroughly damaged by the 1896 and 1933 Tsunamis with only 2 and 4 survivors respectively. An ancestor built a memorial stone on which an important lesson was written, “Don’t build any house below this point!” The stone is located 60m above sea level. The villagers followed this lesson and built their houses in the upper area. When the Tsunami came all villagers ran 800m up the slope and escaped to their houses built on the hill. The Tsunami stopped 50m in front of the hill and all villagers were saved.

In the case of the 1995 Kobe Earthquake, which killed more than 6,000 people the establishment of a GIS database was so important for recovery from the damage. Many local governments started a GIS database but everything including computers, databases, backups, even city and town halls/offices were swept away. Most people lost ID cards and passports which made it difficult to identify them by documentary evidence. In several towns, the official registration data bases were also lost as well as town offices. It made it difficult to count the missing people. Such damages were not expected from experiences from the past disasters.
Lessons from the disaster; misjudges and mistakes

+Accident of Fukushima Nuclear Power Station

First of all, I have to say that there is nothing absolutely safe. Though many Japanese doubted the safety of nuclear power plant, the Japanese government and industry convinced people to support the construction of nuclear power plants as they believed them to be absolutely safe. In spite of their aversion to nuclear matters, as the Japanese have been the only nation to experience atomic bombs, the majority of local people accepted the construction of nuclear power plants through a referendum. Electric power companies and consultants always said that power would be cheapest if produced by nuclear power stations. But now we Japanese realize that the cost has been tremendously high and in addition the accident is robbing them of their life and their use of land more than 250km wide (Tokyo is 250km away from the Fukushima NPS and its drinking water is in danger of contamination from atomic radiation). We are learning how difficult, complicate and time consuming it is to control a nuclear plant after an accident.

There were several serious mistakes in the risk management of Tokyo Electric Power Company (TEPCO). I dare to list these misjudgments and mistakes. The fundamental misjudges were: 1) the estimated Tsunami height would be 5.7m high although the actual Tsunami was 15m high, and the external power generators for emergency were located on the ground floor or lower, 2) an extra power supply for emergencies, as suggested by USA authority, was neglected, 3) TEPCO did not consider that Hydrogen gas explosion could occur and 4) the protection of the reactor pressure vessel by 16cm thick steel and the reactor containment by 3cm thick steel and 2m thick concrete was claimed to be able to withstand any force.

Mistakes and mismanagement were as follows. At first there was no leader who could make quick decisions and follow up with actions. In addition, communications were poorly established between the headquarters and the site of Fukushima NPS. In the beginning, TEPCO hesitated to cool the reactors using sea water as the NPS would become unusable in future. Secondly, the reduction of pressure in the vessels by opening valves was too slow as it was permitted by the Government only after the residents within a radius of at least 10km were evacuated due to the risk of atomic radiation. As a result a Hydrogen gas explosion occurred, which resulted in a tremendous spillage of atomic radiation into the atmosphere and onto land (see Fig. 5). TEPCO continued to explain that the NPS should be safe as all risky radiation gas and water were enclosed in the vessels to prevent them from spreading outside, and there was no risk from the pressure vessels even after Hydrogen gas explosion the next day on March 12. One month after of the accident, we now know that the myth of absolute safety of nuclear power has proved wrong and the majority of Japanese are shouting “no more nuclear power stations”. We have learnt that the halting operations and stabilizing the damaged NPS will take 20 to 30 years. This is a long way from the final goal. We also know that we will have no final goal as the problem of spent atomic fuel rods will remain since they have to be treated in France and not in Japan.

+Misjudgments and mistakes in the evacuation

Many local people made mistakes and misjudgments though they were given lessons by their
ancestors on how to evacuate from a Tsunami. But some people did not know enough about the behavior of Tsunamis. For example, Asahi City, Chiba Prefecture located on the sea coast was hit by the first Tsunami at 3:45pm, one hour after the earthquake when local people had succeeded in evacuating to a hill. After the Tsunami withdrew, some people went down to their houses or the coast, and some people even tried to fill their cars with gasoline. But a second Tsunami came at 4:20pm, 35 minutes after the first Tsunami when these people were swept away and died. After the withdrawal of the second Tsunami, the survivors wanted to search for victims in the city area near the coast as they did not think that the Tsunami would return. Unfortunately a third Tsunami, an even bigger one, hit the coast at 5:26pm, an hour after the second Tsunami and killed the remaining people. One of the survivors said that there would be no more Tsunami after the second one.

The occurrence of Tsunamis and their recurrence were different from place to place. The earliest Tsunami occurred 15 minutes after the earthquake while most Tsunamis came 30 minutes after. But we Japanese knew that sometimes it takes a long time for Tsunamis to arrive. For example, the big 6m high Tsunami hit the Sanriku Area 22 hours after the Great Earthquake occurred in Chile in 1960, killing 142 people. This time a 2.5m high Tsunami hit Christ City, California State, USA, 6,000 km apart from Japan after 10 hours. NHK TV immediately announces whether we have to prepare for a Tsunami after every big earthquake. At this time many people evacuated to the second or third floors of concrete buildings. They should have been safe, but the Tsunami came up to the fifth floor of some buildings for which the roof was the only safe place.

In Japan, all local governments must produce hazard risk maps which show places of refuge or shelter and roads leading to them. Some villagers followed these guide maps and successfully reached the refuge, but in other cases they were unsuccessful as the estimated height of the Tsunami was lower than the actual height. It should be said that we have made serious mistakes in producing such hazard risk maps. 123 out of 959 shelters authorized by 9 cities and towns were washed away even though many people evacuated according to the rehearsals. In particular in Minami Sanriku City, 31 out of 78 shelters were washed away! The disaster prevention center in Kamaishi City which was planned to rescue the refugees was washed away and 54 out of 200 evacuees died.

There was an interesting report in which Sumo Hama, Miyako District, Iwate Prefecture succeeded to evacuate 109 people out of 110 villagers onto a safe hill even though the village had no breakwater against the Tsunami. Those villagers used to rehearse Tsunami evacuation procedures every year including communication among villagers and evacuation routing.

At Funakoshi Primary School located in Yamada Town, Iwate Prefecture, the school itself was designated as a place of shelter as it is located 13m above the sea level. 176 school children were first evacuated to this school but Mr. Shuzo Tashiro (55), a school helper judged the shelter was not high enough when he saw the Tsunami wave at the coast. He urged all children and teachers to escape up to a hill 40m higher. Then the Tsunami came and swallowed the school. If he had not guided them to the higher hill, all people would have died.

There was another successful story in the city of O-arai, Ibaraki Prefecture which was hit by a 5m Tsunami. A young 19 years old fire man continued to shout in front of the disaster wireless microphone which warned people through 45 speakers; “Escape to a higher hill immediately!”
though the Tsunami came to his legs, he continued to shout after the Tsunami receded “stay there and don’t move” for two and half hours. It resulted in all local people including an old lady aged 91 being perfectly safe. The lesson was obvious that ‘software’, particularly communication systems are more effective than hardware such as super high breakwaters. I can say that software is much more cost effective compared with the costly hardware.

Who survived and who did not?

Besides the above mentioned stories, I would like to introduce several fortunate and unfortunate stories as follows.

- When an old lady aged 60 was swallowed by the Tsunami and was bobbing up and down in the water, trying to get to the surface, luckily a “Tatami”, Japanese mat, floated in front of her. She jumped onto the “Tatami” but she was in a whirl and vortex rotating at high speed. Again luckily a wooden house floated by so she jumped onto its roof. Finally she was rescued by a helicopter.

- A young mother with two children tried to escape to a refuge in her car, but she could not move because of a traffic jam. She decided to go back but she could not make a U-turn, she went onto the opposite lane and accelerated in reverse gear. Finally she could escape from the Tsunami but many cars in front were washed away.

- Another young mother tried to evacuate to a refuge on a hill by car together with her mother and children. She listened to a voice of a policeman shouting “Tsunami is coming!” She decided to get out of the car and took her mother with her children to a hilly forest nearby. In only a few seconds, the Tsunami came and swept away her car together with other cars in front of her. Five days later she discovered her car overturned and crushed.

- The town mayor of Otsuchi Town, Iwate Prefecture organized a rescue party immediately after the earthquake with other staff outside of the town office. The deputy town mayor realized the Tsunami was coming and shouted to escape to the fifth floor on top of the town office building. When the deputy town mayor reached the roof of the building, the town mayor was on his way but was swept away by the Tsunami. There was no more than 30 seconds difference between safety and death. Similarly in Onagawa Town, a gentleman ran up to the fifth floor (15m high) and safety but he said no one could believe that the Tsunami would come up to such height (see Fig. 6).

- One journalist of Iwate Tohoku Newspaper tried to drive his car to collect information about the damage. He brought his personal computer from the second floor office into his car. His wife also helped him but she recognized that the Tsunami coming soon. She shouted to her husband to escape to the second floor immediately, but it was too late for him though his wife could escape. She saw her husband’s face in the wave of Tsunami.

- A woman escaped to the second floor of her house where the Tsunami came up almost to the ceiling. There was only a small space, about 20cm for her to breath. She grasped a curtain rail to prevent her from being swept away for more than 30 minutes until the Tsunami receded. She was lucky to be rescued the next morning but she had to spend a very cold night being wet in
below zero degree temperatures.

- A grandmother aged 80 years old and a grandson aged 16 years old were rescued 9 days after the earthquake. Their house was swept away about 100m from its original location in the direction towards the coast, Ishinomaki City, Miyagi Prefecture. The house collapsed but luckily the kitchen floated in the water and they were forced to stay inside the room for several days as the grandmother could not move to escape. As the grandson could move about in the narrow kitchen, he found water, cakes and yogurt in the refrigerator which were given to his grandmother. Finally the grandson succeeded in escaping 9 days later and alerted a rescue patrol. This would be a very rare case.

- At a hospital located in Rikuzen Takada City, Iwate Prefecture, Secretary General of the hospital tried to bring a satellite communication device placed on the ground floor up to the fifth floor. He handed it over to one of his staff and tried to climb up to the fifth floor, but it was too late. The staff could escape to the roof of the hospital with the satellite communication device and survived. The Tsunami came up to the fourth floor and killed all patients who stayed on the third and fourth floors, and even the fifth floor. The speed of Tsunami is said to be 800 km per hour in the ocean and 40 to 60km per hour at the coast and on land. It was much faster than expected.

- Mr. Ohtomo, Wakabayashi District, Sendai City, Miyagi Prefecture had recognized long before the earthquake that it was not appropriate for Sendai City to designated a primary school as a shelter for a Tsunami and requested Sendai City in September 2010 to change the hazard risk map to another place. When the Tsunami hit the district Mr. Ohtomo did not go to the school but went on a higher road where he looked down to see the school swallowed by the Tsunami at the level of the second floor. The road he selected was safe, which was on the border of the Tsunami safe area. 300 people could survive on the road, but many other people who followed the hazard risk map died at the school.

- A son of Mr. Shigeatu Hatakeyama, an owner of oyster culture in Kesennuma, Miyagi Prefecture tried to escape offshore in his fishing boat but the first Tsunami wave immediately hit the boat and almost overturned it. He jumped into the sea but was swept rapidly offshore to a nearby island named Oshima. He succeeded to swim to the island, but his arrival point was the garden of a house located 20m above sea level. He was rescued by a Navy Rescue Patrol helicopter and could go back to his house after three days.

- Mr. Jun-nosuke Oikawa, a fire fighter at Minami Sanriku Town, Iwate Prefecture was watching the Tsunami through a monitor at his office. As his colleagues were working near the coast evacuating people, he went out of the office in order to tell them to escape. At that time the Tsunami had just arrived so he went back to his office of the second floor. The Tsunami, almost 20m high hit his office and the water swamped his room. He was washed outside about 500m to the upstream. He grasped a thick log but the velocity was about 30km per hour for him keep hold of it. Then the Tsunami started to recede, and rapidly washed him 1 to 2 km offshore. Then the second Tsunami arrived and swallowed him up. Because of floating garbage, he could not get to the surface of water. It was snowing and in the very cold water, he remembers seeing land
before he fell unconscious. When he woke at 0:00 on the 12 March, he was rescued in a factory which is located 5km away from the fire prevention center of his office. He was really fortunate.

Prediction of earthquakes

No one has succeeded so far to predict earthquakes. It is one of the world’s most difficult sciences and technologies. Japanese seismic scientists and engineers have not yet succeeded either. I tried to make a prediction using GPS fixed stations located all over Japan, which are constructed by Geo-spatial Information Authority (GSI). Dr. Harumi and I have developed a method for prediction by checking whether the changes in dimensions of triangles between GPS Stations exceed a threshold. I have already submitted a paper on “Prediction of Earthquakes with GPS Data” to GIM, Coordinates and Journal of Digital Earth. Unfortunately Dr. Araki and I are retired persons who have no assistants or research funds. We could confirm that all earthquakes in the past showed early signals before they occurred, but we could not predict exactly on which day the earthquake would occur. The longest period between detected changes and the occurrence of the earthquake was two months and shortest case was only one day. Sadly not many people showed interest in our research and the method has been neglected even though we succeeded to register the method as a Japanese patent in 2006.

Dr. Araki and I are not interested in business but contributions to help people. I hope someone can follow our prediction method in future.

Role of geo-spatial technologies for the disaster management

RS and GIS are useful for damage assessment to compare between situations before and after the earthquake and Tsunami. There are two remarkable issues on this occasion. One was that high resolution satellite images clearly showed the damage and accidents at the Fukushima NPS. Air survey was not available because of the high level of atomic radiation in the air, as well as the destruction of local airports. Satellite images showed the damage to the power station buildings caused by the hydrogen gas explosion, which was useful for recovery planning. Another issue was damage assessment by comparing images before and after the Earthquake and Tsunami. As the damaged area was so huge, helicopters were inadequate. High resolution satellite images and also SAR were very useful to realize the scale of the damage (see Fig.7). Pasco analyzed high resolution satellite images and reported that 70% of the damaged areas by the Tsunami were still inundated on the 24th March, almost two weeks after the earthquake. Insurance companies in Japan announced that they will provide compensation for earthquake insurance by assessing high resolution satellite imagery or aerial photographs without site investigation, as access to the damaged areas was difficult and hence buildings could not be located or assessed.

A GPS wave height recorder located 20km offshore of Kamaishi City showed a 6.6m high wave (the first Tsunami) which would usually be doubled depending on the sea depth and topographic conditions on land. The recorder showed there were 7 Tsunami waves in about 6 hours (see Fig. 8). A GPS recorder cannot be an early warning system as the speed of Tsunami is 800km per hour in deep sea areas and reduces to 60~100km per hour on the coast and land. This means that cities
10km across will be inundated by the Tsunami waves in only 10 minutes. UAVs were very useful to photograph Fukushima NPS for analyzing the damage in detail and planning the next action, as ordinary aerial surveys are impossible due to the high risk of atomic radiation, while high resolution satellite images were also useful in the early stages.

We thank Digital Globe, Google, JAXA, RESTEC and many other organizations for releasing satellite images for comparison purposes on the Internet. I also thank YouTube for publicizing video images of the Tsunami and other scenes. Many Japanese took videos and pictures of the earthquake and Tsunami damage using Japanese digital cameras and video cameras which would be very good references in future for establishing countermeasures on how to prevent, reduce or mitigate the effects of the disaster.

Concluding remarks
Although my family and my house in Tokyo are safe without any damage, I could not stand to watch the TV scenes as the real situation was too miserable. I sympathized with the affected people and those who lost their lives but as an old man living in Tokyo I cannot directly help those people except by donations. What I can do is to inform my friends and colleagues around the world about the real situation and stories. It could be somehow useful for our society to assist in saving human lives.

In conclusion, Japan committed a big mistake in listing nuclear power plants as a sustainable development which has proved to be not sustainable. I would say that natural and man-made disasters can be much bigger than we can imagine. The so-called safety myth cannot be relied upon. An event with a probability of one in a thousand years may occur tomorrow anywhere and at any time.

I would be pleased to know if you have become wiser by reading my article.

Finally I extend my condolences to those victims and their family who were lost as a result of the East Japan Great Earthquake 311. I thank many friends from foreign countries and regions who have sent me kind words to encourage me as well as the Japanese people.